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Abstract
In this paper we calculate the magnetocaloric effect in the compound
MnFeP0.45As0.55. We use a microscopical model in the picture of the band
theory, including a magnetoelastic interaction. The theoretically calculated
isothermal entropy changes upon magnetic field variations are in good
agreement with the available experimental data.

The ability of the magnetic materials to heat up or cool down when subjected to a magnetic
field variation is known as the magnetocaloric effect [1–5]. The magnetocaloric effect is
measured by the isothermal entropy change (�S) and by the adiabatic temperature change
(�Tad) upon magnetic field variation. In the later 1990s [6, 7] it was shown that the isothermal
entropy change for a magnetic field variation from 0 to 5 T in the compound Gd5Si2Ge2

reaches a large value around room temperature. This observation was termed the giant
magnetocaloric effect. After this discovery, many experimental works have been done in
order to get new magnetic materials with a giant magnetocaloric effect. Tegus et al [8] have
shown that for the same magnetic field variation the isothermal entropy change around room
temperature in the compound MnFeP0.45As0.55 is as large as the one observed in Gd5Si2Ge2.
Wada et al [9, 10] showed that the compound MnAs also exhibits a giant magnetocaloric
effect around room temperature. Very recently [11] it has been reported that the isothermal
entropy change in the compound MnAs under hydrostatic pressure is much greater than the one
observed in this same compound at ambient pressure. For instance, at a pressure of 2.23 kbar
and for a magnetic field variation from 0 to 5 T the isothermal entropy change is around
267 J K−1 kg−1. Due to this huge value of the isothermal entropy change, which exceeds the
limit expected from the saturation value of the magnetic entropy, i.e., �Smag = R ln(2J + 1),
this effect was termed the colossal magnetocaloric effect. It is worth mentioning here that
all three compounds Gd5Si2Ge2, MnAs and MnFeP0.45As0.55 undergo a first-order magnetic
phase transition together with a sizable change in the lattice parameters. The experimental
observations of the giant and the colossal magnetocaloric effect indicate that something other
than the alignment of the magnetic moments contributes to the isothermal entropy change
in compounds undergoing a first-order magnetic phase transition. Pecharsky et al [12] have
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experimentally estimated that the isothermal entropy change in the compound Gd5Ge4 has a
sizable contribution from the crystallographic transformation induced in this compound by the
applied magnetic field. More recently, Morellon et al [13] have estimated the contribution
from the crystallographic transformation to the isothermal entropy change in the compound
Tb5Si2Ge2 under pressure. All these experimental evidences show that in the theoretical
calculations of the magnetocaloric effect in compounds with a first-order magnetic phase
transition, it is very important to include the dependence of the crystalline lattice entropy on
the applied magnetic field. Bearing this discussion in mind, we use a simple analytical model
to estimate the contribution from the crystalline lattice to the isothermal entropy change [14].
In this paper we claim that the colossal magnetocaloric effect comes from the crystalline lattice.

Very recently, we calculated the magnetocaloric effect in the compound MnFeP0.45As0.55,
by using a Heisenberg-like model including the magnetoelastic effect [15] on the basis of
the Bean and Rodbel model [16]. However, the magnetocaloric effect in the compound
MnFeP0.45As0.55 should be better described by a model Hamiltonian based on the band theory
of magnetism which incorporates the itinerant electrons [17]. In the present work, we describe
the magnetocaloric effect in the compound MnFeP0.45As0.55, by using a Hubbard-like model
Hamiltonian, including the magnetoelastic coupling which renormalizes the crystalline lattice
vibrations and the electronic structure of the compound. It has been experimentally shown [18]
that the compound MnFeP1−x Asx for concentrations 0.15 � x � 0.66 crystallizes in the
hexagonal Fe2P-type structure. Its saturation magnetization is about 3.9µB/fu and is mainly
due to the Mn ions, although there is a small magnetic moment at the Fe sites parallel to Mn ones.
It has also been experimentally shown that the compound MnFeP0.45As0.55 undergoes a first-
order transition from the paramagnetic to the ferromagnetic phase accompanied by a sudden
decrease of the lattice parameters. A more rigorous theoretical description of the magnetic
properties of the compound MnFeP0.45As0.55 should consider the effect of the disorder in its
electronic structure and include two coupled sublattices, namely, one sublattice for Mn ions
and the other one for Fe ions. However, this kind of calculation is very complex and it is
beyond the scope of the present work. So in order to perform the theoretical calculations and
get an insight into the physical mechanism involved in the magnetocaloric effect observed in
the compound MnFeP0.45As0.55, we adopt some approximations:

(i) since the magnetization of the MnFeP0.45As0.55 is mainly dominated by the Mn ions, we
consider, as our first approximation, only the sublattice of the Mn ions with an effective
magnetization renormalized by the magnetic moments from the Fe ions;

(ii) we take, as our second approximation, an effective electron density of states, which
incorporates the presence of the disorder in the compound MnFeP0.45As0.55.

Within these approximations, we start with the following model Hamiltonian in the mean field
approach:

H =
∑

iσ

(ε0 + U〈n−σ 〉 − µBhext)d+
iσ diσ +

∑

i jσ

Ti jσ d+
iσ d jσ . (1)

This Hamiltonian describes a system of itinerant electrons, in the single-band approximation.
ε0 is an atomic energy level, U is the Coulomb interaction parameter for itinerant electrons and
hext is the applied magnetic field. The term Ti jσ = ∑

ε̃kσ eik(ri −r j ) represents the electron energy
of hopping between two different sites, where the energy ε̃kσ is taken as ε̃kσ = εkσ (1 − γel�)

where � = (V − V0)/V0 is the unit cell deformation and γel is the electronic magnetoelastic
coupling parameter which renormalizes the width of the energy band. This parametrization
is an extension of the Bean and Rodbel approach of the magnetoelastic effect for a model of
itinerant electrons. Here, we take the unit cell deformation, associated with the magnetoelastic
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coupling, proportional to the square of the total magnetization, i.e., � ∼ M2. Using the Green
function techniques, the local Green function for the Hamiltonian in equation (1) is given by

g00σ (ω) =
∫

ρ0(ε
′) dε′

ω − (1 − γel M2)ε′ − ε0 − U〈n−σ 〉 + µBhext
(2)

where ω = ε + i0 and ρ0(ε
′) is a standard paramagnetic electron density of states. The spin

dependent density of states for 3d electrons is obtained from ρσ (ε) = −(1/π) Im g00σ (ω). The
electron occupation number per spin direction is given by 〈nσ 〉 = ∫

ρσ (ε) f (ε) dε, where f (ε)

is the Fermi distribution function. The magnetization is calculated from M = 5(〈n↑〉 − 〈n↓〉),
where the factor 5 accounts for the degeneracy of the 3d states. The spin dependent electron
density of states must be self-consistently determined under the condition that the total electron
occupation number should be kept constant. From equation (2) it can be observed that the width
of the electron density of states changes as a function of temperature due to the magnetoelastic
coupling parameter γel. Once the magnetic self-consistency is solved, we can calculate the
thermodynamic properties. The contribution from the itinerant electrons to the total entropy
is given by [17]

Smag(T, hext) = R

[
∑

σ

∫ µ

−∞
ln[1 + e−β(ε−µ)]ρσ (ε) dε +

1

kT

∑

σ

∫ µ

−∞
(ε − µ)ρσ (ε) f (ε) dε

]

(3)

where µ is the chemical potential of the itinerant electrons, R is the gas constant and
β = 1/kT, k being the Boltzmann constant. It should be emphasized that, in transition metal
based compounds, it is not possible to separate the magnetic and the electronic entropies,
since in these compounds the magnetism is due to the itinerant electrons. Thus, the previous
expression for Smag contains both the magnetic and the electronic entropies. Notice also that the
magnetic entropy given in equation (3) depends on the cell deformation through the electronic
magnetoelastic coupling parameter γel, which modifies the width of the spin dependent electron
density of states. Taking into account the magnetoelastic coupling, the contribution from the
crystalline lattice to the total entropy, in the Debye approximation, is given by [17]

Slat(T, hext) =
[
−3R ln(1 − e− 
̃D

T ) + 12R

(
T


̃D

)3 ∫ 
̃D/T

0

x3

ex − 1
dx

]
. (4)

Here 
̃D = 
D(1−γph M2) is the renormalized Debye temperature, where 
D is the bare value
of the Debye temperature and γph is the phononic magnetoelastic coupling parameter. Notice
that the crystalline lattice entropy depends on the applied magnetic field via the renormalized
Debye temperature. The total entropy of the compound is given by S = Slat + Smag.

In order to calculate the magnetocaloric effect in the compound MnFeP0.45As0.55 we
need to fix a set of model parameters. We use an effective electron density of states and
properly choose the Coulomb interaction parameter to reproduce the experimental value of
the saturation magnetization at T = 0 K. The compound MnFeP0.45As0.55 undergoes a first-
order transition from the paramagnetic to the ferromagnetic phase accompanied by a sudden
decrease of the lattice parameters, which modifies the Debye temperature and the electronic
structure of the compound. In our model these effects are taken into account by the electronic
(γel) and phononic (γph) magnetoelastic parameters. The electronic magnetoelastic coupling
parameter γel was chosen to yield a first-order magnetic phase transition and the parameter γph

was taken as 0.06γel. The bare value of the Debye temperature was taken as 
D = 400 K. With
these parameters, which are kept fixed during the entire self-consistent process, we calculate
the temperature dependence of the magnetization and the temperature dependence of total
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Figure 1. Temperature dependence of the magnetization for MnFeP0.45As0.55. The solid line
corresponds to our calculations whereas circles represent experimental data [8] for an applied
magnetic field of 1 T.

entropy of the compound MnFeP0.45As0.55. Our calculations show that, as we go from low
temperature to high temperature, the electron density of states suddenly becomes broader
around the magnetic ordering temperature. As a result the magnetization goes abruptly to zero
yielding a first-order magnetic phase transition.

It is important to mention that for the Hamiltonian given in equation (1), in which the
electron–electron interaction is treated in the mean field approximation, the magnetic ordering
temperature (TC) is overestimated. For the model parameters used in the present work the
calculated magnetic ordering temperature is approximately one and a half times higher than
the one found experimentally. In order to get a better value of TC it is necessary to go beyond
the mean field approximation used in this work. This kind of calculation is much more complex
and it is not within the scope of the present paper. Although the mean field approximation
overestimates the magnetic ordering temperature, it provides a good trend of experimental
data for the magnetic and thermodynamics properties. So in order to compare our theoretical
calculations with the available experimental data, we make plots using the renormalized
temperature T/TC. In figure 1, we plot the temperature dependence of the magnetization
calculated by M = 5(〈n↑〉 − 〈n↓〉) for an applied magnetic field of 1 T. In this figure we can
observe a good agreement between our theoretical calculations and the experimental data [8].
In figure 2, we plot the total entropy in the absence of a magnetic field (full line), for an applied
magnetic field of 2 T (dotted line) and for an applied magnetic field of 5 T (dashed line). From
the entropy versus temperature diagram shown in figure 2, we calculated the isothermal entropy
change upon magnetic field variation as −�S(T ) = S(T, hext �= 0) − S(T, hext = 0). From
the entropy versus temperature diagram shown in figure 2 we also calculated the adiabatic
temperature change upon magnetic field variation, i.e., �Tad(T ) = T2 − T1 determined under
the adiabatic condition S(T1, hext �= 0) = S(T2, hext = 0). The theoretically calculated
isothermal entropy changes shown in figure 3, for a magnetic field variation from 0 to 2 T (solid
line) and one from 0 to 5 T (dashed line),are in good agreement with experimental data [8]. The
large value of the isothermal entropy change in the compound MnFeP0.45As0.55 is associated
with the first-order magnetic phase transition, which is due to the strong magnetoelastic
coupling. With the model parameters used in this work, we found that the contribution from
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Figure 2. Temperature dependence of the total entropy (S = Slat + Smag) for MnFeP0.45As0.55.
The solid line represents the calculations in the absence of an external magnetic field whereas the
dotted and dashed lines represent the calculations for 2 and 5 T respectively.
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Figure 3. Isothermal entropy change (�S) for MnFeP0.45As0.55. The dotted, solid and dashed
lines correspond to our calculations for a magnetic field variation from 0 to 1.45 T, from 0 to 2 T
and from 0 to 5 T respectively. Squares and circles represent experimental data [8].

the crystalline lattice to the isothermal entropy change is less than 10%. In figure 4, we plot the
adiabatic temperature changes for the magnetic field variation from 0 to 1.45 T (dotted line),
from 0 to 2 T (solid line) and from 0 to 5 T (dashed line). From this figure we can note that
the value of the peak in the calculated curve for the magnetic field variation from 0 to 1.45 T
is somewhat smaller than the experimental data [19]. This fact could be an indication that the
model should be improved to go beyond the Debye approximation in order to better describe
the crystalline lattice entropy. Besides, we need further experimental data for other magnetic
field variations, in order to check our theoretical calculations and get an insight into the physical
mechanism involved in the magnetocaloric effect observed in the compound MnFeP0.45As0.55.
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Figure 4. Calculated adiabatic temperature change (�Tad) for MnFeP0.45As0.55 for a magnetic
field variation from 0 to 1.45 T (dotted line), from 0 to 2 T (solid line) and from 0 to 5 T (dashed
line). Squares are experimental data [19] for a magnetic field variation from 0 to 1.45 T.

0.85 0.90 0.95 1.00 1.05 1.10 1.15
0

5

10

15

20

-∆
 S

 (
 J

/K
.k

g
 )

T/T
C

Figure 5. Isothermal entropy change (�S) for MnFeP0.45As0.55 for a magnetic field variation from
3 to 5 T (dotted line) and one from 2 to 7 T (solid line). Squares and circles represent our theoretical
calculations for a magnetic field variation from 0 to 2 T and one from 0 to 5 T respectively.

We also calculate the magnetocaloric quantities �S and �Tad for the magnetic field
variations �hext = 2 and 5 T starting from an applied magnetic field different from zero. Our
theoretical predictions for the isothermal entropy changes for the magnetic field variations
from 2 to 7 T and from 3 to 5 T are shown respectively by the solid and dotted lines in
figure 5. For the sake of comparison, we also plot in this figure the isothermal entropy changes
calculated for the magnetic field variation from 0 to 5 T (open circles) and that from 0 to 2 T
(squares). From figure 5, we can note that the isothermal entropy changes in the compound
MnFeP0.45As0.55 depend not only on the magnetic field variation but also on the starting and
final values of the applied magnetic field. We can observe that for the same magnetic field
variation, the higher the initial magnetic field, the smaller the peak in the �S curve and the
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Figure 6. Adiabatic temperature change (�Tad) for MnFeP0.45As0.55 for a magnetic field variation
from 3 to 5 T (dotted line) and one from 2 to 7 T (solid line). Squares and circles represent our
theoretical calculations for a magnetic field variation from 0 to 2 T and one from 0 to 5 T respectively.

higher the temperature of its location. This occurs because the applied magnetic field shifts the
magnetic ordering temperature of the compound MnFeP0.45As0.55 to higher temperature and
tends to change its magnetic phase transition from first to second order. As the compound
MnFeP0.45As0.55 undergoes a first-order magnetic phase transition, its isothermal entropy
change for a magnetic field variation from 2 to 7 T is still large. Similar behaviours are
observed in the curves for the adiabatic temperature changes shown in figure 6. This kind
of behaviour is expected for any material with a first-order magnetic phase transition. These
results show that, if we make a magnetic field variation starting with an initial magnetic field
different from zero, we can use a given magnetic material with a first-order magnetic phase
transition as a magnetic refrigerant in different ranges of temperature.

In conclusion, in this paper we have used a microscopical model to calculate the
magnetocaloric effect in the compound MnFeP0.45As0.55. The model is based in the picture
of the band theory and includes the magnetoelastic coupling. Our theoretical calculations
for the isothermal entropy change upon magnetic field variation show a good agreement
with the available experimental data. The present calculations may be improved by using
an approach beyond the mean field approximation and by including a more rigorous treatment
of the chemical disorder. However this procedure makes the numerical calculations much
more complex and it is beyond the scope of this paper. Besides, it is expected that these
improvements would not change the main conclusions of this work.
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